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Abstract

Background: Increases in human longevity have made it critical to distinguish healthy longevity from longevity
without regard to health. Current methods focus on expectations of healthy longevity, and are often limited to binary
health outcomes (e.g., disabled vs. not disabled). We present a new matrix formulation for the statistics of healthy
longevity, based on health prevalence data and Markov chain theory, applicable to any kind of health outcome and
which provides variances and higher moments as well as expectations of healthy life.

Method: The model is based on a Markov chain description of the life course coupled with the moments of health
outcomes (“rewards”) at each age or stage. As an example, we apply the method to nine European countries using the
SHARE survey data on the binary outcome of disability as measured by activities of daily living, and the continuous
health outcome of hand grip strength.

Results: We provide analytical formulas for the mean, variance, coefficient of variation, skewness and other statistical
properties of healthy longevity. The analysis is applicable to binary, categorical, ordinal, or interval scale health
outcomes. The results are easily evaluated in any matrix-oriented software. The SHARE results reveal familiar patterns
for the expectation of life and of healthy life: women live longer than men but spend less time in a healthy condition.
New results on the variance shows that the standard deviation of remaining healthy life declines with age, but the
coefficient of variation is nearly constant. Remaining grip strength years decrease with age more dramatically than
healthy years but their variability pattern is similar to the pattern of healthy years. Patterns are similar across nine
European countries.

Conclusions: The method extends, in several directions, current calculations of health expectancy (HE) and
disability-adjusted life years (DALYs). It applies to both categorical and continuous health outcomes, to combinations
of multiple outcomes (e.g., death and disability in the formulation of DALYs) and to age- or stage-classified models. It
reveals previously unreported patterns of variation among individuals in the outcomes of healthy longevity.

Keywords: Health, Matrix population models, Longevity, Prevalence, Markov chains with rewards, Healthy longevity,
Sullivan method

Background
Increases in human longevity, driven by improvements in
nutrition, public health, medical care, and medical tech-
nology have dramatically changed the prospects of future
life, especially for the elderly. This has led to the need
to distinguish healthy longevity from longevity without
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regard to health, a concept first introduced by [1]. The
interest in measuring healthy longevity has spawned a
plethora of indices [2–4], including health expectancy
(HE), health-adjusted life expectancy (HALE), disability-
free life expectancy (DFLE), quality-adjusted life years
(QALY), disability-adjusted life years (DALY); see [5] for
an overview.
It is not our purpose here to review these measures.

We recommend the detailed and extensive treatment by
Siegel, who notes that these categories “are not easily
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distinguished or even mutually exclusive on close exam-
ination” ([5],Chap. 8). In this paper, we use the following
definitions, as outlined in Fig. 1. We are concerned with a
class of health metrics that evaluate what we call healthy
longevity. This class includes all analyses that combine
information on mortality and on health status, with the
intent to relate health and length of life. Our usage is
close, but not identical, to whatMurray et al. [3] call “sum-
mary measures of population health,” although their usage
leaves out important aspects.
Measures of healthy longevity can be divided into those

that measure the amount or quality of life lived in various
health states and those that measure the amount or qual-
ity of life lost due to particular sources of mortality and
morbidity. Murray et al. [3] attempted to capture this dif-
ference by speaking of “health expectancies” and “health
gaps,” but their terminology unfortunately leaves no room
for consideration of variances as well as expectations. As
shown in Fig. 1, one of our goals is to provide a framework
that includes the variance and higher moments of both
types of healthy longevity measures.
Healthy longevity by no means exhausts the spectrum

of summary measures of population health. For exam-
ple, some studies describe population health based on
age-standardized measures of cause-specific mortality, or
on distributions of health indicators such as body mass
index or tobacco use; see ([5],Chap. 16) or the book by
Keyes and Galea [6]. Even farther removed from healthy
longevity are, of course, measures of the reproductive
health of populations (rates of pregnancy loss, preva-
lence of contraceptive use, etc.); see ([5],Chap. 9). None

Fig. 1 A classification of indices of healthy longevity. Healthy
longevity refers to analyses that incorporate mortality and health, and
use that information to address questions about length of life. Healthy
longevity may focus on life lived in different states of health or life lost
due to particular causes of mortality or morbidity. HE = health
expectancy. HALE = health adjusted life expectancy. QALY = quality-
adjusted life years. DALY = disability-adjusted life years. [1] Analyses
routinely report only expected values. [2] In addition to expectations,
this method also provides the variance, standard deviation, coefficient
of variation, and skewness, as well as higher moments if desired

of these important indices satisfy the definition of healthy
longevity.
Figure 1 clarifies the demographic and health issues

approached by an analysis of healthy longevity: does it
consider length of life? does it measure life lived or life
lost? is it limited to expected values, or does it also cal-
culate variances and higher moments? The power of the
theoretical framework that we present here is that it pro-
vides a unified, matrix-based, approach to all of these
concepts.
An important distinction is between analyses based

on the prevalence of some health condition and those
based on incidence of conditions (in the general sense of
describing transitions of individuals among health states).
Incidence-based calculations have well known advantages
(e.g., [3, 7]), but require longitudinal data that is not always
available. In this paper, we are concerned with the analysis
of prevalence data; we will consider matrix methods for
incidence data elsewhere.
These indices all modify the length of life by a system

of weights that describe, on some scale, the quality of
that life. Each of them is limited in the kinds of condi-
tions considered and the range of insights provided. In
this paper, we introduce a matrix approach to the analy-
sis of healthy longevity. Matrix formulations have a long
history in demography as an adjunct to life table methods
[8–10]. They have several typical advantages. Matrix for-
mulations greatly simplify the notation for calculations
that are inherently multidimensional. They yield expres-
sions that are simply and efficiently computable in any
matrix-oriented programming language (e.g., MATLAB or
R). Perhaps their most important benefit is to facilitate
connections with other mathematical results. In our case,
amatrix formulation of healthy longevity using finite-state
Markov chains with rewards provides access to previously
unexamined statistical properties and sensitivity analyses.
Although the literature on healthy longevity is vast [5],

in general some important aspects of healthy longevity
have been neglected:

• Most prevalence-based analyses are formulated using
life tables, and thus apply only to age-classified
demography. In this paper, we extend the domain of
analysis to include stage-structured and multistate
models. The familiar age calculations are a special
case.

• Many analyses are restricted to binary health
characteristics (e.g., disabled or not disabled). Our
approach is equally applicable to binary, nominal,
ordinal, and interval measures of health. This greatly
extends the possibilities for measuring the elusive
concept of “health.”

• Current analyses focus almost exclusively on the
expectation of healthy life, neglecting other, equally
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interesting, statistics of longevity. In particular, they
ignore inter-individual variability, which is critical to
sociology considered as a population science [11].
Our approach yields measures of inter-individual
variability, including the variance, skewness, and
other statistics. Such process variance must not be
confused with the analysis of uncertainty due to
parameter estimation error.

The models underlying healthy longevity calculations
differ depending on whether they rely on prevalence data
(the proportion of a population experiencing a given
health condition at a given age), or on incidence data (the
rates of transition among health states at a given age). In
this paper, we consider the common case of prevalence
data, and defer consideration of incidence models to a
subsequent paper.
The most commonly used approach to incorporating

prevalence data into health longevity is the so-called Sulli-
van method [12, 13]. It is based on age-specific prevalence
of a binary condition (e.g., disabled vs. non-disabled). If
the prevalence of being in a healthy, non-disabled condi-
tion in age class j is vj, and the number of years lived in
age class j is Lj, then the Sullivan method writes health
expectancy as

HE(x) =
∞∑

j=x
Ljvj (1)

Written this way, the Sullivan method clearly repre-
sents the accumulation of something (fractional years in
a healthy condition) over the course of a life. In the next
section, we replace this calculation with a more general
stochastic model based on a Markov chain description
of the life course. The Sullivan method is obtained as a
special case.

Methods: a Markov chainmodel for healthy longevity
Notation
Matrices are denoted by upper-case bold symbols (e.g., P),
vectors by lower-case bold symbols (e.g., ρ). Vectors are
column vectors by default. The transpose of P is PT.
The vector 1 is a vector of ones. The diagonal matrix
with the vector x on the diagonal and zeros elsewhere is
denoted diag (x). The expected value is denoted by E(·),
the variance by V (·), the coefficient of variation by CV (·)
and the skewness by Sk(·). The Hadamard, or element-
by-element, product of matrices A and B is denoted by
A ◦ B. Transition matrices of Markov chains are written
in column-to-row orientation, and hence are column-
stochastic. Table 1 summarizes the variables used in the
calculations to follow.
An analysis of healthy longevity includes three compo-

nents: a demographic model to describe the life course,

Table 1 A summary of mathematical notation for the variables
used in definition and calculation of healthy longevity using
Markov chains with rewards

Symbol Definition Dimension

P Markov chain transition matrix (ω + a) × (ω + a)

U Survival and age transition matrix ω × ω

M Mortality matrix a × ω

Ri Matrix of ith moments of rewards (ω + a) × (ω + a)

ρ i Vector of ith moments of lifetime
accumulated reward

(ω + a) × 1

ρ̃ i As ρ i , but for living states ω × 1

Z 0-1 matrix to select living states ω × (ω + a)

N Fundamental matrix ω × ω

η1 Vector of ith moments of remaining
longevity

ω × 1

ω Number of age classes scalar

a Number of absorbing (dead) states scalar

including mortality risks as a function of age (or some
other individual state variable), a specification of the
health outcomes to be considered, and an analytical
machinery to calculate the resulting statistical properties
of healthy longevity:
Here, the life course is described as a discrete-time

absorbing Markov chain (see, e.g. [9, 14–16]). The tran-
sient states, which we number 1, . . . ,ω, correspond to
living stages (usually age classes). The absorbing states,
which we number 1, . . . ,α, correspond to death. Cases
with more than one absorbing state, where α > 1, occur
when death is classified by cause of death, age at death,
etc. If the stages are numbered so that the transient states
precede the absorbing states, the transition matrix of the
Markov chain can be written

P =
(
U 0
M I

)
(2)

The matrixU, of dimension ω×ω, describes transitions
among the transient states. For an age-classified model,
U contains survival probabilities on the subdiagonal and
zeros elsewhere; e.g. (for ω = 4),

U =

⎛

⎜⎜⎝

0 0 0 0
p1 0 0 0
0 p2 0 0
0 0 p3

[
p4

]

⎞

⎟⎟⎠ , (3)

The entry in the lower right corner is optional; including
it makes the last age class open-ended, with an age-
invariant survival probability pω. We will assume through-
out that the dominant eigenvalue ofU is less than 1, so that
an individual beginning in any transient state will eventu-
ally be absorbed (i.e., will eventually die) with probability
1. Although we will focus on age-classified models, the
method applies equally to life cycles classified by stages
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(e.g., employment status, marital status) or to multistate
models combining stages and age classes. Many results
familiar from life table analyses can be extended using
this framework. For example, the matrix U provides all
the moments of longevity [10, 15, 17], measures of life
disparity [18, 19], and analyses of frailty [20].
The matrix M contains probabilities of death; mij is the

probability that an individual in age class i makes a tran-
sition into absorbing state j. In the simplest case, M has
only a single row, corresponding to death. However, for
DALY calculations, M will contain two rows, one repre-
senting death due to the cause under consideration, and
the other death from all other causes. More generally, M
can contain transitions to absorbing states defined by age
at death, stage at death, cause of death, or combinations of
such categories.

Markov chains with rewards
To develop analyses of healthy longevity, we extend the
basic model to a Markov chain with rewards [21–23].
The concept of “reward” provides a very general way to
quantify the value or quality of life. Imagine an individual
moving through the states (age classes or health states) of
a Markov chain. Suppose that, at each time step, the indi-
vidual collects a reward. It may be positive or negative,
and depends on the transitionmade by the individual. The
reward accumulates as long as the individual lives. In our
case the reward will be some measure related to health
(e.g., the simple case of a reward of one year of healthy life
if the individual can perform all activities of daily living;
one year of disabled life if one or more activities are lim-
ited). The concept is much more general. For example this
approach has recently been applied to demographic anal-
yses of lifetime reproductive output, in which the reward
at any age or stage is the production of children or other
offspring [16, 24, 25]. It has been used to analyze lifetime
economic transfers, in which the reward at any age may
be income, expenditures, or deficits, a case where both
positive and negative rewards occur [26].
The life cycle is described by the absorbing Markov

chain transition matrix in Eq. (2). An individual mak-
ing the transition from state j to state i collects a reward
rij which is a random variable with specified moments
(all moments here are moments around zero). Transitions
include the possibility of remaining in the same state. The
moments of the rij are placed in a series of reward matri-
ces; the matrix containing the kth moments of the rij is
denoted Rk :

Rk =
(
E

[
rkij

] )
. (4)

Rewards accumulate over time. We assume — and this
is important — that the accumulation stops at death.
Because the rewards, the pathways through the life course
taken by an individual, and the lifetime of the individual

are all random variables, so is the lifetime accumulated
reward. Our goal is to calculate its statistical properties,
including the mean, variance, standard deviation, coeffi-
cient of variation, and skewness, in terms of the transition
matrix P and the moment matrices Rk . To this end, define
ρk as the vector (dimension (ω + α) × 1) containing the
kth moments of accumulated rewards as a function of the
initial stage of the individual

ρk =
(
E

[
ρk
i

] )
. (5)

Notation alert
The subscripts on the vectors ρk and the matrices Rk
denote the order of the moments. When referring to the
entries of the vector or the matrix, subscripts refer to
the location in the matrix and the order of the moments
migrates to become a parenthetical superscript. That is,
the ith entry of ρk is ρ

(k)
i and the (i, j) entry of Rk is r(k)ij .

A recursive formula for these moments was given by
[16], and an exact solution is given in [24, 25]. Because
rewards are not collected in the absorbing states (in our
context, this is the eminently reasonable assumption that
the dead do not accumulate any form of longevity, healthy
or otherwise), we need only compute that part of ρ corre-
sponding to the transient, living states 1, . . . ,ω. Denoting
this subvector by ρ̃k , of dimension ω × 1, we write

ρ̃k = Zρ (6)

where

Z = (
Iω×ω 0ω×α

)
. (7)

Then the moments of remaining lifetime rewards, for
individuals starting in any of the transient states, are given
by the entries of the moment vectors ρ̃i, where

ρ̃1 = NTZ (P ◦ R1)
T 1s (8)

ρ̃2 = NT
[
Z (P ◦ R2)

T 1s + 2
(
U ◦ R̃1

)T

ρ̃1

]
(9)

ρ̃3 = NT
[
Z (P ◦ R3)

T 1s + 3
(
U ◦ R̃2

)T

ρ̃1

+ 3
(
U ◦ R̃1

)T

ρ̃2

]
(10)

and, in general,

ρ̃m = NTZ (P ◦ Rm)T 1s

+
m−1∑

k=1

(
m
k

)
NT

(
U ◦ R̃m−k

)T

ρ̃k (11)

where

R̃i = ZRiZT (12)

is the ω × ω submatrix of Ri corresponding to the tran-
sient states. ThematrixN is the fundamental matrix of the
absorbing Markov chain,

N = (Iω − U)−1 , (13)
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the (i, j) entry of which is the mean amount of time spent
in state i by an individual starting in stage j. Proofs of
(8)–(11) are given in ([25], Theorem 1).
The entries of the first moment vector ρ1 give the

mean healthy longevity for individuals of each age or
stage, where “healthy longevity” is measured by the life-
time accumulated health rewards, for individuals of each
age. Depending on the health outcome of interest, this
accumulationmight be in units of years of life without dis-
ability, years of life weighted by some quantitativemeasure
of health, or years of life lost to mortality and morbidity.
The variance, standard deviation, coefficient of variation,
and skewness of healthy longevity are calculated from the
moment vectors, as

V (ρ) = ρ2 − ρ1 ◦ ρ1 (14)
SD (ρ) = √

V (ρ) (15)

CV (ρ) = diag
(
ρ1

)−1 SD (ρ) (16)
Sk (ρ) = diag [V (ρ)]−3/2 (

ρ3 − 3ρ1 ◦ ρ2

+2ρ1 ◦ ρ1 ◦ ρ1
)
. (17)

The skewness, which is dimensionless, measures the
symmetry of the distribution of healthy life. Positive skew-
ness implies a long tail of positive values, and vice versa.
The mean vector ρ̃1 gives exactly what the Sullivan

method provides, in the special cases to which it applies:
the healthy life expectancy. But with negligible additional
effort, ρ̃2 and ρ̃3, from Eqs. (9) and (10), quantify the vari-
ation among individuals implied by the joint stochastic
action of the transition matrix U and the reward moment
matrices R1, R2, and R3. In the next section we turn to the
calculation of these reward matrices for various indices of
health and various kinds of data.

Quantifying health rewards
Health outcomes may be measured on nominal (e.g.,
disabled or not disabled), ordinal (e.g., mild, moderate,
or severe symptoms), or interval (e.g., numerical scores
on physical or mental tests, such as blood pressure,
BMI, or grip strength) scales. The Markov chain with
reward framework can accommodate any of these mea-
surement scales in the construction of the reward matri-
ces Rk . We consider some of the most common cases
here; the construction of reward matrices is discussed in
detail in [25].

Binary outcomes: health from prevalence
Let vi denote the prevalence, in age class i, of the health
state of interest. This could be the prevalence of a disabil-
ity or its complement, the prevalence of being disability
free. Then

reward in age class i =
{
1 with probability vi
0 with probability 1 − vi

(18)

which is a Bernoulli random variable. The reward
matrices are

R1 =

⎛

⎜⎜⎜⎝

v1 · · · vω 0
...

...
...

v1 · · · vω 0
v1
2 · · · vω

2 0

⎞

⎟⎟⎟⎠ (19)

R3 = R2 = R1. (20)

The last row of the matrices credits individuals who die
with 1/2 year of the health condition. The final column of
zeros reflects the assumption that no rewards accumulate
in the absorbing state.

Polychotomous nominal health outcomes
Polychotomous health outcomes include more than two
conditions, e.g., healthy (H), receiving home care (C), or
receiving institutional care (I). Polychotomous outcomes
can be combined into groups to create binary outcomes.
Given n outcomes, there will be

(n
k
)
possible groups of

k outcomes. One might, for example, be interested in
longevity in any of the three categories H, C, and I. Or, one
might want to analyze the combination H+C correspond-
ing to freedom from institutionalization; the prevalence of
this condition is the sum of the prevalences of H and C.
Similarly for the combination H+I (no home involvement
required) and C+I (not healthy, regardless of whether care
is in the home or an institution). The total number of such
conditions is

n−1∑

k=1

(
n
k

)
. (21)

Ordinal scale health outcomes
A health outcome with n > 2 ordinal measures; e.g., low
(L), medium (M), and high (H), can be grouped into binary
comparisons in n − 1 ways that preserve the order (e.g.,
L vs. M+H and L+M vs. H). Other groupings may also be
useful, however. If L, N, and H correspond to low, normal,
and high outcomes on some test, then a comparison of
L+H vs. N might be relevant. In any case, however, the
prevalence of a combination is the sum of the prevalences
of the component outcomes.

Interval scale measures
When nominal and ordinal measures are reduced to
binary outcomes, prevalence data is sufficient to deter-
mine all the moments of the reward matrices, and thus to
calculate the statistics of healthy longevity, however that
may be defined. Quantitativemeasures, on the other hand,
do not generally imply a relation between the mean and
the other moments, and thus individual data are required.
Survey data provide this kind of information, and the
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reward matrices are created by empirically calculating the
moments of the health outcome measure. If ri denotes the
health outcome for age class i, then

Rk =

⎛

⎜⎜⎜⎜⎜⎜⎝

E
(
rk1

)
· · · E

(
rkω

)
0

...
...

...
E

(
rk1

)
· · · E

(
rkω

)
0

0.5E
(
rk1

)
· · · 0.5E (

rkω
)
0

⎞

⎟⎟⎟⎟⎟⎟⎠
(22)

Caswell and Kluge [26] applied this approach to cal-
culate the moments of lifetime income and expendi-
tures using individual data from the German Income and
Expenditure Survey. Our example below will use grip
strength measurements from the SHARE survey in Euro-
pean countries, but the principles are identical.

Variance within and among trajectories
The variance among individuals in lifetime healthy
longevity arises from two sources: differences among the
trajectories taken by individuals through their lives, and
differences in health status at each age or stage within
the life cycle. The overall variance in Eq. (14) can be
decomposed into these two components.
The variance among trajectories is calculated by elim-

inating the variance at each age within trajectories, by
fixing the rewards at their mean values [24, 25]. Suppose
that the prevalence of a condition at some age is, say, 0.3.
Then the rewards calculated in (19) and (20) imply that an
individual will spend a year with the condition (with prob-
ability 0.3) or spend the year without the condition (with
probability 0.7). This is obviously a source of variance
among individuals.
Under a fixed reward, every individual experiences 30%

of the year with the condition and 70% of the year without
the condition. In this (hypothetical) situation, the mean
reward is the same (0.3 years with the condition), but there
is no variance among individuals. Thus the variance cal-
culated over the lifetime is due only to differences in the
pathways that individuals follow through their lives. In
a purely age-classified model, the pathway is exactly the
length of life. In a model that included some other stages
(imagine, for example, marital status combined with age),
pathways can be more complicated, but the concept is
the same. The reward matrix R1 for fixed rewards is
unchanged, but the higher moments become

R2 = R1 ◦ R1 (23)
R3 = R1 ◦ R1 ◦ R1 (24)

The variance within trajectories is then calculated by
subtraction.

Combining health rewards: disability-adjusted life
years
Disability-adjusted life years are a fundamental compo-
nent of perhaps the most extensive health demography
study ever attempted, the Global Burden of Disease (GBD)
study [27, 28]. DALYs differ from simple calculations of
healthy longevity in several ways. First, they are computed
on a cause-specific basis, to calculate the health burden
of a specific disease or condition.(In principle, nothing
prevents DALYs from being calculated for all causes com-
bined.) Second, DALYs combine mortality and morbidity
information to measure health gaps in terms of years lost
to both death and disability, and are thus a “health gap”
measure in the terminology of Murray et al. [3]. A larger
value of DALY implies poorer health and a greater bur-
den of mortality and morbidity due to the cause under
consideration.
The two components of DALYs are calculated as follows.

1. Years lost due to mortality. An individual who dies
from the cause under consideration loses some
number of years of remaining life. The expectation of
this loss is the remaining life expectancy at the age of
death. The GBD project calculates this from a
synthetic life table based on the lowest death rates for
each age group among all locations with total
population exceeding 5 million ([29], p. 1263). We
will generalize this to also account for the variance
and other moments of remaining life.

2. Years lost due to disability. The prevalence rates for
all the known diseases are multiplied by a
disease-specific severity of disability weight that
ranges between 0 and 1 based on how disabling the
disease is. One year spent in a severely disabling
condition, with a weight close to 1, would cause the
almost complete loss of that year. One year spent in a
lightly disabling condition, whose weight is close to 0,
would cause a minor loss in terms of year-time.

Summing the two components and integrating them
over age will give global burden of disease of a population,
expressed in the total number of years of good health lost
due to either death or disability. See [30] for a description
of the calculations.
Our matrix formulation of DALY calculations extends

the results to include the highermoments andmeasures of
variation among individuals. Figure 2 shows a segment of
an age-classified life cycle with two causes of death. Sup-
pose that Cause 1 is the focal cause under investigation;
Cause 2 represents all other causes. The transition matrix
for individuals following this life cycle graph is

P =
(
U 0
M I

)
(25)
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Fig. 2 Life cycle. Partial life cycle graph for an age-classified life cycle
with with four age classes and two causes of death; qi and si are the
probabilities of death due to causes 1 and 2, respectively, in age class i

=

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
p1 0 0 0 0 0
0 p2 0 0 0 0
0 0 p3 0 0 0
q1 q2 q3 q4 1 0
s1 s2 s3 s4 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
(26)

where pj is the survival probability of age class j. The mor-
tality matrix M contains the probabilities of death from
each of the two causes of death.
The reward matrices for this population must include

both years of life lost due to mortality and quality of life
lost due to disability. Years of life lost are associated with
the transition from the living age classes to the first row
of the matrix M; the reward for this transition is equal
to the number of years of life lost due to this death. This
number of years is a random variable whose moments we
can calculate from amortality schedule. The choice of this
mortality schedule is up to the investigator; but whatever
choice is made [29], we will denote the matrix derived
from this mortality schedule as Us.
Let ηj denote the longevity of an individual of age j under

the standard mortality schedule. The moments of ηj are
calculated from the fundamental matrixNs = (I − Us)

−1.
Let ηi be the vector containing the ithmoments of remain-
ing longevity for each age class. The first three of these
moment vectors are given by

ηT
1 = 1TNs (27)

ηT
2 = ηT

1 (2Ns − I) (28)
ηT
3 = ηT

1
(
6N2

s − 6Ns + I
)

(29)

[15, 17, 31]. These vectors provide the years of life lost
due to mortality when incorporated into the entries of
the reward matrices Ri that correspond to transitions to
absorbing state 1.
Individuals who do not die from cause 1 will lose par-

tial years of life due to disability from cause 1. This loss
depends on the prevalence and the severity of disability.

Let vj be the prevalence of disability due to cause 1 in age
class j, and let sj be the severity of such disability, where
0 ≤ sj ≤ 1. A severity of 1 would imply that the qual-
ity of life under the disability is equivalent to death. The
GBD study makes a great effort to estimate the prevalence
and severity of disability due to large numbers of causes in
countries around the world [28].
The reward, measuring years of life lost due to disabil-

ity from the specified cause, during the survival transition
from age j to age j + 1 is

rj+1,j =
{
sj with probability vj
0 with probability 1 − vj

(30)

Combining the two rewards, the moment matrices are:

R1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
v1s1 0 0 0 0 0
0 v2s2 0 0 0 0
0 0 v3s3 0 0 0

E(η1) E(η2) E(η3) E(η4) 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
(31)

R2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
v1s21 0 0 0 0 0
0 v2s22 0 0 0 0
0 0 v3s23 0 0 0

E
(
η21

)
E

(
η22

)
E

(
η23

)
E

(
η24

)
0 0

0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
(32)

R3 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
v1s31 0 0 0 0 0
0 v2s32 0 0 0 0
0 0 v3s33 0 0 0

E
(
η31

)
E

(
η32

)
E

(
η33

)
E

(
η34

)
0 0

0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
(33)

These expressions can be concisely written in matrix
notation. Define the ω × ω matrices V and S to have the
entries of v and s, respectively, on the subdiagonal and
zeros elsewhere, and define the unit vector e1 = (

1 0
)T

with a 1 in the first entry and a 0 in the second entry. Then,

R1 =
(
V ◦ S 0ω×2
e1ηT

1 02×2

)
(34)

R2 =
(
V ◦ S ◦ S 0ω×2
e1ηT

2 02×2

)
(35)

R3 =
(
V ◦ S ◦ S ◦ S 0ω×2

e1ηT
3 02×2

)
(36)

Given the Markov chain matrix P in Eq. (25) and the
reward matrices Ri, the calculation of the moments of
the lifetime accumulated reward proceed as for binary
and quantitative measures of health. The results would
would provide not only the expected DALYs, but also the
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moments, variances, and skewness of disability-adjusted
life years, for individuals of any age class.
Because DALYs are a very sophisticated measure of

healthy longevity, it is worth summarizing the data
required for their calculation:

1. for the population and condition under investigation,
age-specific mortality rates due to that condition,
and due to all other causes,

2. for the population and condition under investigation,
the age-specific prevalence and severity of disability
due to that condition, and

3. for the standard population, the age-specific
mortality schedule due to all causes.

An example: healthy longevity from SHARE
In this section, we present example calculations of healthy
longevity in terms of a binary outcome (disabled or not
disabled) and a continuous quantitative variable (grip
strength). We compute the mean, standard deviation,
coefficient of variation, an skewness of longevity and of
healthy longevity, and compare the patterns across several
countries.
We obtained information on the prevalence of disabil-

ity from survey data reporting results for individuals,
in this case the Survey of Health, Ageing, and Retire-
ment in Europe (SHARE), and combined this with age-
specific mortality information from the Human Mortality
Database [32].
SHARE is a longitudinal survey containing informa-

tion on more than 85,000 individuals, aged 50 and over,
in 20 European countries. It comprises several waves
and ad-hoc modules on specific topics, which make it
a very complex database suitable for studying a wide
range of research questions. We used the simplified ver-
sion easySHARE [33], which includes the same number
of observations as SHARE but is restricted to a subset of
variables covering demographics, household composition,
social support and network, childhood conditions, health
and health behavior, functional limitation indices, work
and money.
From easySHARE we selected data for the most recent

available wave (wave 4), corresponding to year 2011, and
for the nine countries for which amortality schedule in the
year 2011 was available on the HMD (Germany, Sweden,
France, Denmark, Switzerland, Belgium, Czech Republic,
Portugal and Estonia). Table 2 reports the sample size by
country. We terminated calculations at age 90 to avoid
erratic results due to small sample sizes for prevalences at
ages beyond 90.

Disability-free longevity. As a binary outcome we
defined as healthy individuals with no limitations in any of
the five activities of daily living as reported in the SHARE

Table 2 SHARE wave 4: Sample size of the respondents in the
countries selected for the analysis

Female Male

Belgium 2937 2363

Czech Republic 3542 2576

Denmark 1240 1036

Estonia 4080 2748

France 3345 2512

Germany 836 736

Portugal 1185 895

Sweden 1057 894

Switzerland 2068 1682

variable adla. We defined vi as the proportion of healthy
individuals in age class i and calculated reward matrices
based on Eqs. (19) and (20). To obtain total longevity, we
repeated the calculations, setting vi = 1 for all age classes
(i.e., counting a full year of life for each year lived).
We calculated the vectors ρ̃1, ρ̃2, and ρ̃3 containing the

moments of remaining longevity and healthy longevity,
and from those vectors calculated the variance, stan-
dard deviation, coefficient of variation, and skewness of
longevity according to Eqs. (14)–(17).

Health as measured by grip strength Hand grip
strength is an index of overall muscular strength, and
has been found to be inversely associated with all-cause
mortality, cardiovascular mortality, myocardial infarc-
tion, and stroke (e.g., [34]). A standardized measure
of grip strength, using a dynamometer, is reported in
units of kg in the SHARE variable maxgrip. We com-
puted the first three moments of maxgrip from the
SHARE data, and constructed reward matrices according
to Eq. (22). We calculated the vectors ρ̃1, ρ̃2, and ρ̃3 con-
taining the moments of remaining lifetime grip strength,
and from those calculated the variance, standard devia-
tion, coefficient of variation, and skewness according to
Eqs. (14)–(17).

Results
The results of the calculations can be displayed and com-
pared in various ways. Table 3 shows the mean, SD, CV,
and skewness of longevity and healthy longevity up to age
90. Results are shown for men and women, at ages of 55
and 75 years, in the arbitrarily chosen country of Belgium.
For men, life expectancy is 20% longer than healthy life

expectancy at age 55, and 13% longer at age 75. For women
the same comparison is 26% and 15%. The SD of longevity
is 25–60% larger than the SD of healthy longevity. Because
the mean and SD vary together, the CVs of longevity and
healthy longevity are almost identical, at 0.3–0.5. The CV
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Table 3 The mean, standard deviation (SD), coefficient of
variation (CV) and skewness (Sk) of longevity and healthy
longevity to age 90, for Belgium. Healthy longevity is defined as
life spent with no limitations of activities of daily living, obtained
from easySHARE data. Mean and SD are in units of years; CV and
Sk are dimensionless

Men Women

55 75 55 75

mean L 24.5 10.1 27.9 11.8

HL 20.6 7.6 22.2 7.9

SD L 9.4 5.1 8.5 5.1

HL 7.6 3.8 6.4 3.2

CV L 0.38 0.50 0.31 0.40

HL 0.37 0.50 0.29 0.41

Sk L -0.75 -0.38 -1.34 -0.89

HL -0.80 -0.28 -1.35 -0.51

for both men and women increases with age. Skewness is
negative for both longevity and healthy longevity.
Figures 3 and 4 compare these statistics for all nine

countries from the easySHARE dataset. There are no dra-
matic differences among countries, although small quan-
titative differences are apparent. As we could expect,
women live longer than men but have higher proportion

of years with disability. At age 55 they can expect to live
about 30 years more in all the analyzed countries, while
men have fewer years to live. On the other hand, the sex
difference in healthy life expectancy is smaller, indicating
that women are likely to spend more years with disability
than men. Only in Sweden and Denmark are the number
of years with disability similar between the two sexes.
Figure 5 shows the entire age schedule of the statistics of

remaining healthy longevity for Belgium. The same results
for all countries are displayed in the Additional file 1. As
they age, both men and women see their inter-individual
variation in the expected years of life left decrease from
about 9-10 years at the age 55 to about 1-2 years at the
end of their life. Moreover, the plots show that the vari-
ation in healthy life expectancy is lower than in total life
expectancy.
Turning to grip strength as a health outcome, selected

statistics at age 55 and 75 for Belgium are shown in
Table 4. Unlike disability-free longevity, this measure does
not naturally fall into a “healthy” and “non-healthy” out-
come. Just as the binary measure based on disability
rescales a year of life (to 0 if disabled, to 1 if not disabled),
the quantitative measure rescales a year of life to the qual-
ity of that life, in this case measured by grip strength.
We will refer to lifetime healthy longevity in this case
as measured in grip-years (in the same way that person-
hours measures work done by some number of persons
over some amount of time) Thus, changes in grip-years
are a direct measure of the future lifetime prospects for

Fig. 3 Statistics of longevity and healthy longevity, ADL, men. Mean, Standard Deviation, Coefficient of variation and Skewness up to age 90, for
different countries, at ages 55 and 75. Health is defined as the absence of any limitation of activities of daily living
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Fig. 4 Statistics of longevity and healthy longevity, ADL, women. Mean, Standard Deviation, Coefficient of variation and Skewness up to age 90, for
different countries, at ages 55 and 75. Health is defined as the absence of any limitation of activities of daily living

muscular strength and hence revealing about mortality
risks.
A man of 55 can look forward, on average, to 1044

grip-years of life up to age 90. By age 75, this prospect
has declined by 65%, to 366 grip-years. A woman of 55
has a grip expectancy of 715 grip-years; by age 75 this
has declined by 63%, to 263 grip-years. Variability among
individuals, as measured by the CV, is similar to that for
disability-free longevity (0.3–0.5). The skewness is nega-
tive, and relatively small. Figure 6 compares these statistics
across all nine countries. As with disability-free longevity,
there are no striking differences, suggesting that these pat-
terns are general for the European countries included in
SHARE.
Figure 7 shows the age trajectories of remaining grip

strength years for Belgium; again, a gallery of all the
countries is presented in the Additional file 1.

Discussion
We have introduced an approach to healthy longevity
that extends current analyses in several directions. It can
accommodate any kind of demography, whether based on
age, stage, or some combination. It provides information
on any kind of health measure, from discrete binary out-
comes to continuous interval scale values. It is equally
able to analyze “expectancy” or “gap” measures (sensu [3]),
and it can combine multiple types of measures (e.g., years
lost due to mortality and years lost to disability). It pro-
vides a wide range of summary statistics (mean, variance,

standard deviation, coefficient of variation, and skew-
ness). And as a additional advantage, the results are easily
computable in the form of direct matrix manipulations.
We have emphasized the importance of variances

and higher moments (e.g., skewness) of lifetime healthy
longevity. These statistics are valuable from both a sci-
entific and an applied perspective. We do not live, work,
plan, invest, or make decisions in a world of averages. Any
scientific understanding of any process (natural or social)
that extends no further than averages is a partial under-
standing at best, and a misleading one at worst (e.g., [11]).
Moreover, in any application with economic implications
variance is a source of risk. Attempts to plan investments
or allocate resources without considering risk are fool-
hardy, as is well known in actuarial and financial contexts
(see [35]; “An informed discussion of public policy issues,
however, requires an analysis of the risks and uncertain-
ties involved. Whether in policies for health or transport,
matters monetary or meteorological, in times of war and
peace, decisions should reflect a balance of risks. Yet pol-
icy debates continue to be permeated by the ‘illusion of
certainty.’ ”).
It is important to recognize that stochasticity in the out-

come of a process (survival and health, in the present
case) is not the same as uncertainty resulting from error
in estimation of parameters. Studies of the propagation of
uncertainty in order to quantify the consequences of esti-
mation error are based on Monte Carlo sampling from
the distributions of parameter estimates (e.g., [36, 37]). An
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Fig. 5 Statistics of remaining longevity and healthy longevity, ADL,
Belgium. Mean, Standard Deviation, Coefficient of variation and
Skewness up to age 90, based on SHARE data. Health is defined as
having no limitation in activities of daily living

advantage of our method is that uncertainty propagation
calculations will be easy to implement because the calcu-
lations of healthy longevity are simple and analytical. Note
that at least one study has reported that stochasticity in
active longevity is much greater than uncertainty due to
parameter estimates [38].
Individual-based (or agent-based) microsimulations can

also provide information on variance among individu-
als. However, the prevalence-based calculations addressed

Table 4 The statistics of remaining grip strength years, up to age
90, for Belgium, based on SHARE data. Mean and SD are in units
of 103 grip units; CV and Sk are dimensionless

Men Women

55 75 55 75

mean 1.044 0.366 0.715 0.263

SD 0.370 0.182 0.203 0.104

CV 0.354 0.496 0.283 0.393

Sk -0.919 -0.368 -1.469 -0.796

here neglect the very kind of individual-level status
changes that are the raison d’etre for individual-based
simulations. In the present context, an individual-based
simulation would be nothing more than a computation-
ally inefficient way to obtain approximations of quantities
given exactly by Eqs. (14)–(17).
We focus on prevalence-based analyses here, although

such analyses are inherently limited because they do not
track the actual movement of individuals among health
conditions [3, 7]. Although they require more data than
do models based on prevalence, multistate incidence-
based models are often applied in health demography
[39, 40], medical decisionmaking [41], disease natural his-
tory studies [42], and medical follow-up studies [43]. We
will present the extension of our methods to incidence-
based multistate models in a subsequent paper.
Our two example cases, disability-free longevity and

lifetime grip strength, demonstrate the method applied to
a binary and a continuous health outcome, respectively.
Analysis reveals familiar patterns for the expectation of
life and of healthy (disability-free) life: women live longer
than men but spend less of that time in a healthy con-
dition. The variability among individuals as measured by
the standard deviation declines with age, but the CV, on
the order of 0.5, is nearly constant, increasing slightly
with age. Remaining grip strength years decrease with
age more dramatically than healthy years. Variance also
decreases with age, but when standardized relative to the
mean, the CV of grip strength years is similar to that for
disability-free longevity.
The variance in healthy longevity reported here is the

stochastic outcome of the probabilities of survival and
of health rewards, applied identically to all individuals as
they age. This is individual stochasticity in the terminol-
ogy of [16, 17]. Heterogeneity among individuals certainly
exists in the population from which the probabilities are
estimated, but once incorporated into the analysis, these
differences are discarded and the matrices apply identi-
cally to all individuals. To capture the effects of hetero-
geneity (in frailty, resistance, recovery, health behaviors,
etc.) requires a multistate model that incorporates these
factors as well as age. Given such a model, the variance in
healthy longevity can be decomposed into contributions
from stochasticity and heterogeneity (see [20, 44]).
The computational requirements for the implementa-

tion of this method are minimal given any program-
ming language that permits matrix operations, including
MATLAB and R.
Sensitivity analysis is an important component of any

demographic analysis. The goal is to reveal how changes
in the parameters affect the results and provide impor-
tant information on the causal factors determining the
results. Sensitivity analyses in health demography are
often based on crude numerical manipulations of one a
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Fig. 6 Statistics of longevity and healthy longevity, grip strength. Mean, Standard Deviation, Coefficient of variation and Skewness up to age 90, for
men and women, at ages 55 and 75. Health is measured by grip strength; healthy longevity is in units of grip strength-years

Fig. 7 Statistics of remaining longevity and healthy longevity, grip
strength, Belgium. Mean, Standard Deviation, Coefficient of variation
and Skewness up to age 90, for men and women. Health is measured
by grip strength; healthy longevity is in units of grip strength-years

few parameters (e.g., [45, 46]) or by creating some num-
ber of scenarios in which entire sets of parameters are
manipulated (e.g., [47]).
Because our analysis is formulated in terms of matrix

operations, it is amenable to analytical sensitivity calcula-
tions based on matrix calculus. The necessary mathemat-
ical theory for the sensitivity analysis of Markov chains
with rewards has been presented by [25], and will be
directly applicable to the statistics of lifetime health. Sup-
pose that ξ denotes a vector whose entries are age-specific
measures of any aspect of lifetime healthy longevity, and
let θ denote a vector containing any parameters that
determine mortality and/or health rewards in any way.
The mathematical sensitivity analysis of van Daalen and
Caswell [25] provides a direct calculation of the derivative
matrix

dξ

dθ T
=

(
∂ξi
∂θj

)
(37)

the (i, j) entry of which is the derivative of the ith entry
of ξ to the jth entry in the parameter vector θ . Such sen-
sitivity analyses have now been applied to a variety of
demographic models and outputs [18, 19, 48–52]. These
calculations provide far more detailed sensitivity infor-
mation than is provided by constructing scenarios or
numerically manipulating parameters. It will be interest-
ing to explore the application of sophisticated sensitivity
calculations to the evaluation of potential treatment or
intervention strategies.
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Conclusions
We show that healthy longevity can be analyzed by incor-
porating prevalence of health outcomes into a Markov
chain with rewards. The Markov chain defines the transi-
tions and survival between age classes; the rewards specify
the moments of the health outcome at each age or stage.
Expected healthy longevity is the first moment of life-
time accumulated health. We present analytic formulas
for all the moments, extending the results to provide the
variance, skewness, and other statistics of healthy life.
The analysis applies to binary, nominal, ordinal, or inter-
val scale health outcomes. An analysis of nine European
countries based on the SHARE dataset confirm the appli-
cability of the method to both binary (disability-free
longevity) and continuous (hand grip strength) measures.
Disability-adjusted life years (DALY) is an example of an
index that combines two kinds of health outcomes (years
lost to death and years lost to disability), and our method
readily accommodates this index.

Additional file

Additional file 1: Statistics of healthy longevity for individual countries
This document contains two sets of figures. The first set displays the age
schedules of the statistics (mean, standard deviation, coefficient of
variation, and skewness) of remaining longevity and remaining healthy
longevity, up to age 90, for each of the countries in the SHARE dataset.
Healthy life is defined by no limitations in activities of daily living.
The second set of figures displays the age schedules of the same statistics
of healthy longevity measured by grip strength, for each of the countries in
the SHARE dataset. (PDF 384 kb)
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